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TRENDS IN ENGINEERING PLATE THEORIES

The paper summerises some basic trends in modelling and analysis of refined plate theories
not primary from a mathematical aspect but from the viewpoint of engineering application and
of an increasing reliability of engineering structure analysis. Shear rigid and shear deformable
plate models including shear correction factors or kinematical warping effects can be formula-
ted. An extended two-dimensional theory for transverse shear stress analysis yields improved
results, the influence of singularities on the global structure behaviour must be considered and
the kinematical degree of freedom of plate models is an important criterion in structural ana-
lysis of folded plate structures. Composite materials have become an increasing importance in
engineering structures. Multilayered, laminated and sandwich plates are used in aerospace
and many other industries. Thin-walled structures composed of composite material have gene-
rally a moderate thickness and low transverse stiffness. An adequate modelling of structural
plate elements should be given by refined plate theories.

1. Introduction

Modelling and analysis of plates and plate struc-
tures are basic problems of mechanical structure ana-
lysis in civil and mechanical engineering. The classi-
cal Kirchhoff's plate theory was for a long period the
predominant model in engineering applications, e.g.
in bridge-building, shipbuilding, etc. The structural
elements of these engineering constructions were in
general single layered plates composed of metal or
reinforced concrete. Their mechanical properties were
on a macroscopic level homogeneously through the
thickness and the structural response was isotropic
or orthotropic.

A suitable extension of the geometrically linear
Kirchhoff's plate theory has been presented by von
Kármán. In selected thin-walled structures the values
of the displacements and the plate thickness are of
the same order. The nonlinear terms in the kinemati-
cal plate equations affect the stress and the deforma-
tion states of the thin plate and must be partly consi-
dered. The necessity to apply the von Kármán's plate
equations is connected with the loading level and the
plate geometry. Note that loading conditions and geo-
metrical relations which are typically for the use of
the Kirchhoff's plate theory in dependence on the
material model (elastic, plastic or time-dependent) in
some cases demand the introduction of the von
Kármán's plate equations.

Nowadays there is a growing use of composite
materials and modern lightweight structures employ
plate elements consisting of three or a much greater
number of layers. The material of the layers can be

either homogeneous or inhomogeneous. Typical three-
layered structure elements are sandwich plates. The
outer layers are made of high strength material, e.g.
homogeneous metal faces or fibre reinforced multi-
layered faces. They cover the inner layer consisting
of a soft and rather homogeneous material, e.g. a foam,
or of an inhomogeneous material, e.g. a cellular fil-
ler. The first serious applications of sandwich struc-
tures concerned the aircraft industry, because san-
dwich structural elements created lightweight design
and improved strength properties and corresponded
functional requirements and mechanical characteri-
stics.

At present, sandwich and multilayered, lamina-
ted plates are widely used in various fields of engine-
ering, for instance in aircraft and rocket constructions,
machine building, automotive industry, oil produc-
tion, civil engineering, energetics, sports industry, etc.
Modelling and analysis of sandwich and laminated
plates is a more complicated problem of engineering
plate modelling and yield an increasing significance
of extended, refined plate theories. First steps in this
direction were presented by Reissner and Mindlin for
homogeneous moderately thick plates.

All engineering plate concepts reduce the three-
dimensional equilibrium, kinematical and constituti-
ve equations of the mechanics of deformable bodies
and describe approximately the mechanical response
of plate structures by a two-dimensional model. The-
se engineering concepts based in general on hypothe-
ses of the deformation or stress states. Figure 1 sum-
merises some linear plate models with different
approximations of the in-plane and the transverse di-
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Fig. 1. Two-dimensional modelling of thin and moderately thick plates, linear plate theories
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• Displacement approximations

uα(xβ,z) = uα
0(xβ) - zw,α(xβ) Kirchoff (1850)

w(xβ,z) = w(xβ)

uα(xβ,z) = uα
0(xβ) + zϕα(xβ) Hencky, Bollé (1974)

w(xβ,z) = w(xβ) Mindlin (1951)

uα(xβ,z) = uα
0(xβ) - [w,α(xβ) + ϕα(xβ)]4z3/3h2 Levinson (1981)

w(xβ,z) = w(xβ) Reddy (1989)

• Displacement approximations - Product series

Meenen,Altenbach (1999)

w(xβ,z) = w(xβ)

• Stress approximations

E. Reissner (1944), (1950)

• Mixed approximations E. Reissner (1984), (19870)
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splacements and or the in-plane and the transverse
stresses, respectively. Also mixed approximations of
displacements and stresses are possible and can be
useful. In the equations of the displacement approxi-
mations uα(xβ,z) are the in-plane displacements and
w(xβ,z) the transverse displacement or the plate de-
flection. uα

0(xβ) are membrane displacements, w(xβ)
the deflection of the middle surface of the plate, ϕα(xβ)
are cross-sectional rotations. and are sets of functions
in product series expansions for the in-plane displa-
cements and the transverse displacements. The second
term in the product series expansion for in-plane di-
splacements with a set of functions ψq(z) introduces

a coupling between the in-plane and the transverse
displacements and allowing to impose restrictions on
the distributions of the transverse shear stresses of
a plate. Most applied classical and refined plate the-
ories can be incorporated in the product series appro-
ximation as special series of the general expansions,
e.g. Kirchhoff's, Hencky's, Preußer's or Touratier's
plate models [2, 3]. Plate modelling that incorporate
conditions on the transverse normal stresses are not
included in these approximations. It demands addi-
tional terms in the series approximation for w(xβ,z)
which contain second derivatives of uq

α and wq.
Asymptotic integration methods or concepts of the
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introduction of deformable two-dimensional directed
surfaces are more mathematical techniques and are
not considered in this paper. For more information
see, for example, [4].

2. Engineering Theories for Isotropic Plates

A classification of engineering plate theories can
be given by

• small deflection linear theory for thin plates,

• small deflection linear theory for moderately thick
plates, and

• large deflection nonlinear theory for thin plates.

These classical plate models for homogeneous iso-
tropic plates are connected with the fundamental pa-
pers of Kirchhoff, Reissner, Mindlin and v. Kármán
[1]. Figures 2 and 3 show the kinematical hypotheses
and the stress distributions for these classical models.

The Kirchhoff's plate model yields, from viewpo-
int of engineering applications, reasonable accuracy
in the analysis of various global response parameters
like deflection, vibration, buckling, etc. This simplest
and most widely used plate model in classical struc-
tural mechanics based on the following assumptions:
• Points on a normal to the undeflected midplane of

the plate lie on a normal to the midplane of the
deflected plate, i.e. a lineal element of the plate
extending through the plate thickness, normal to
the midplane in the unstressed state, undergoes at
most a translation and a rotation and mains normal
to the deformed middle surface. The lineal element
through the thickness does not elongate or contract
and the plate behaviour in thickness direction is
shear rigid.

• The slope of the deflected plate in any direction is
small, so that its square may be neglected in com-
parision with unity.

• The midplane of the plate is a "neutral plane", i.e.
any midplane stresses arising from the deflection
of the plate into a non-developable surface may be
ignored.

• The stresses normal to the midplane, arising from
applied loading, are negligible in comparision with
the normal stresses in the plane of the plate.

Experimental tests and analytical or numerical
reference results of three-dimensional plate problems
qualify the Kirchhoff's assumptions if an elastic iso-
tropic plate is sufficiently thin and its transverse de-
flection is small compared to its thickness. The con-
tradiction between the number of physically motivated
boundary conditions and the order of the governing
differential equation can be overcome by introducing
"Kirchhoff's edge forces". From a theoretical point of

view the Kirchhoff's plate theory underestimates the
transverse deflection and overestimates natural fre-
quencies and buckling loads.

The von Kármán's plate model is in combination
with the Kirchhoff's assumptions based on the funda-
mental additional assumption that geometrical non-
linearity can not be neglected, but that the strains and
the square of rotations are small compared to unity.
So, in a more correct view, the von Kármán's plate
theory, which is restricted to small strains, but mode-
rately large rotations must be termed as a "moderate-
ly large deflection theory" but, customarily, we find
in literature the technical term "large deflection the-
ory". The von Kármán plate theory predicts the de-
flection and stresses in thin plates with reasonable
accuracy for deflections having the order of the plate
thickness.

The Kirchhoff and the von Kármán plate theory
are based on three independent kinematical degrees
of freedom that means three independent translations
for all material points of the middle surface, if there
are transverse and in-plane loadings. If the plate lo-
ading is restricted to transverse loading only, the in-
dependent kinematical degree of freedom reduces for
Kirchhoff plates to one. The Reissner or the Mindlin
plate theories include approximately the effect of
transverse shear strains and yields a simple refined
plate theory by introducing assumptions on the di-
splacement distribution over the plate thickness, which
is less restrictive than the Kirchhoff assumption. The
improved plate model has five kinematical degrees
of freedom: three translations and two independent
rotations. These shear deformable linear plate models
of Reissner and Mindlin can be simple extended to
a nonlinear shear deformable plate model for mode-
rate large deflections by including the von Kármán's
geometrical nonlinear relations [5].

The shear rigid von Kármán plate model has been
used in creep damage analysis. This problem is ma-
thematical formulated by a non-linear initial-boun-
dary problem which can be solved numerically. Nu-
merical examples demonstrate the significance of the
geometrical nonlinear plate theory in the creep-da-
mage analysis even for moderate deflections [6].

3. Classical and Refined Theories for Multi-
layered Plates

The modelling of multilayered plates, i.e. san-
dwich and laminated plates, based on an analogy with
the modelling of isotropic, single-layer plates, sec-
tion 2. But there are two principal different appro-
aches for a two-dimensional plate modelling of mul-
tilayered plates [7]:
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Fig. 2. Kirchoff's, Reissner's and Mindlin's plate models:

a) Shear rigid Kirchoff model,
b) Shear deformable Reissner's and Mindlin's model
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1.The hypothesis of a broken normal. The plate the-
ory is deduced using a layerwise description. The
so-called partial layerwise plate theories assume
layerwise expansions for the in-plane displace-
ments only, the full layerwise theories use expan-
sions of all three displacement components.

2.The hypothesis of a mechanical equivalent single
layer. The plate theories are formulated for the en-
tire layer package and not for separate layers.

Theories of multilayered plates have to take into
account the inhomogeneous distribution of the me-
chanical properties over the plate thickness and the
anisotropic response of any single layer and of the
equivalent layer. For the analysis of local plate re-
sponses, e.g. delamination, or for sandwich and mul-
tilayered plates with great differences in the layer
thicknesses and the mechanical layer properties, the
layerwise theories should be used. The description of
the cross-sectional deformations of each layer is also
in the layerwise theory not correct, but the error is
much less than the error of a equivalent single layer
model. If the layer thicknesses and the layerwise elas-
tic moduli vary not so much, the equivalent single
layer plate models estimate the global response pa-
rameters, e.g. deflection, eigen-vibration, buckling,
with a sufficient accuracy. An alternative approach if
the layer thicknesses and the layerwise elastic moduli
are significantly varying is demonstrated in [8]. In
this case an improved determination of the shear cor-
rection can be useful and the global estimates show
a good agreement with results based on improved
theories.

In general, layered composite plates are slender
structures and their displacements and in-plane stres-
ses are obtained quite accurately by means of two-
dimensional plate theories. These theories based on
assumptions concerning the distribution of the in-pla-
ne displacements. Restricting the modelling on lami-
nated plates with a great number of fibre reinforced
layers, the most simple theories based on the equiva-
lent single layer hypothesis assume linear distribu-
tions of the in-plane displacements. The general used
models in engineering applications are the classical
laminate theory (CLT) and the first-order-shear-de-
formation theory (FOSDT) 9.
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In Eqs (1) u, v are the in-plane displacements in
the middle surface of the plate and w is the out-of-
plane displacement, i.e. the deflection. In the CLT we
have ψα=-δw/δxα, α = 1, 2 and in the FOSDT the ψα

are independent kinematical functions. In contrast to
the CLT or the FOSDT modelling of isotropic plates,
multilayered plates with an unsymmetrical stacking
sequence of the layers have a coupling of in-plane
and out-of-plane response for tranxzsverse loading and
the kinematical degree of freedom is 3 (CLT) or 5
(FOSDT). For plates with strong changes in geome-
try or folded plate structures it can be necessary to
expand the FOSDT by including transverse shear de-
formations and thickness effects.
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In this extended sense the FOSDT-6 is characteri-
sed by 6 independent degrees of freedom, Eq. (2).
Numerical tests demonstrate that for standard pro-
blems with a simple geometry the results are very si-
milar for a modelling with 5 or 6 degrees of freedom
and therefore mostly in engineering applications the
FOSDT-5 version with 5 degrees of freedom is used
[10]. The reason for such limitation is that the magni-
tude of the assumed drilling ψ

3
 of the normal is much

smaller in comparison with the other two rotation,
because the deformability of a thin-walled structure
even in the case of moderate thickness is very small.
Counter-example are presented, fort example, in [11].

The Kirchhoff's plate theory is unable to describe
the mechanical behaviour of structural elements for
which the transverse shear strains are not negligible.
Nevertheless the CLT is used in many engineering
applications and enable a simple structural design and
optimisation of laminate stacking, etc. The FOSDT
proposed an extended kinematical model with addi-
tional degrees of freedom and included transverse
shear deformations. But the FOSDT yields a linear
distribution of the in-plane displacements and a con-
stant distribution of the transverse shear stresses over
the plate thickness which is incompatible with the real
structural response. A simple way to improve the de-
termination of the transverse shear stiffness can be
the introduction of a shear correction factor [8, 12,
13].

Recently by several authors so-called high-order-
shear deformation theories (HOSDT) [14, 15] are
developed:
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of functional degrees of freedom is limited, e.g.
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Higher order approximations lead warping in-plane
displacements (Fig. 4) and also non-constant transverse
displacements over the thickness. In [16] a special zig-
zag-function is proposed for FOSDT-modelling that
leads to improved in-plane responses and allows to
include thickness effects as well as transverse shear
and transverse normal stresses. The use of HOSDT
increases the computational effort rapidly whereas the
gain in accuracy is small. Thus higher order theories
are of advantage from a mathematical research, but
in structural analysis only within a relatively narrow
band-width of problems. The FOSDT approach is
sufficient for determining in-plane stresses even if the
plate slenderness is not very high [17].

For isotropic plates the in-plane stresses are often
fully sufficient in structural strength analysis. Multi-
layered composite plates are however inhomogene-
ous and anisotropic and to specify delamination or
other failure modes transverse shear stresses and nor-
mal out-of-plane stresses must be known too. Using
local applications of equilibrium conditions and inte-
grating the derivatives of the in-plane stresses over
the plate thickness lead to a so-called extended two-
dimensional theory and yield excellent results for
transverse shear and normal stresses if a mechanical
loading applied on laminated plates with cross-ply or
angle-ply stacking [18, 19]. In some cases of non-
linear temperature distribution higher order approxi-
mation theories or three-dimensional modelling sho-
uld be used [20].

4. Singularities and Plate Responses

In structure analysis of plates different kinds of
singularities can greatly influence the local and glo-
bal structure behaviour [21]. It is well-known that con-
centrated forces or moments and sharp notches or
cracks yield singular stress fields. But there are some
other problems in modelling plates with singularities:
• Concentrated forces acting upon a very thin plate

with a membrane response or concentrated mo-
ments acting upon a Kirchhoff plate are quite im-
proper models. In the first case the membrane has

no resistance to a concentrated force and already
the smallest concentrated force results in infiniti-
ve deflection. Point supports to membranes of any
shape will have for the reason of no resistance no
influence to their vibration behaviour, i.e they will
not change the frequencies. In the second case
a Kirchhoff plate has no rotational resistance to
a concentrated moment and consequently influen-
ce coefficients or stiffness matrices according to
the classical plate theory are meaning full for con-
centrated forces but meaning less for concentrated
moments. Furthermore point constraints can not
resist rotations, they are only capable of supplying
transverse concentrated forces to constrain the di-
splacement. The calculation of static deflections
or bending moments, of buckling or vibration mo-
dels of pointwise clamped plates became unaccep-
table.

• Interior sharp corners will produce infinite stres-
ses, i.e singularities in classical plate theories. The
singularities can also have significant effects upon
the global behaviour of the plate. Stress singulari-
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Fig. 4. Geometry of a undeformed lineal element.
CLT: rotation u

3,α, FOSDT: independent rota-
tions ϕα, HOSDT: independent rotations and
warping
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ties in sharp corners can be represented exactly [22,
23]. For various types of corners are different sets
of functions which satisfy the boundary conditions
exactly. These are the so-called corner functions.
Only if these corner functions are added to ano-
ther global set of displacement functions, the cor-
ner stresses can be accounted properly. If the Ritz
method is utilised e.g. for free vibration analysis
of plates, mathematically complete sets of admis-
sible displacement functions, which only satisfy
geometric boundary conditions, yield upper bound
approximations to the frequencies and the exact
values may be approach as closely as desired if
sufficient terms are taken. But if a set of corner
functions will be added the convergence will be
accelerated rapidly. The same situation is for fini-
te element analysis.

• For a shear deformable plate, e.g. the Mindlin pla-
te, already a concentrated force acting transverse
to the middle surface results in infinitive deflec-
tion and so the Mindlin plate has a different re-
sponse in comparison to the Kirchhoff plate, and it
is a quite improper mathematical model for singu-
lar forces too. A real concentrated loading is di-
stributed over a small area and the Mindlin plate
model yields a correct modelling.

5. Solution Procedures

Analytical and numerical solution procedures for
the different plate models are discussed and summe-
rised in various monographes and textbooks, e.g. [1,
24, 25, 26, 27, 28, 29].Analytical solutions are limi-
ted to plates with simple geometry, e.g. rectangular
or circular plates, and plates with simple elastic re-
sponse, e.g. isotropic, orthotropic or quasi-orthotro-
pic, etc. In most cases analytical solutions can be for-
mulated in terms of infinite series and the effect of
truncating the series on the accuracy of the solution
have to be estimated. The few closed analytical plate
solutions are limited to very special problems.

The validity of approximate plate theories, i.e. of
the displacement or the stress approximations can be
assessed by comparing their predictions with analyti-
cal solutions of the three-dimensional equations of
elasticity. This problem is discussed in various rese-
arch papers, e.g. in [30] for the anisotropic equations.

Approximate plate solutions can be given as nu-
merical solutions or approximate series solutions with
sets of trial functions. The most general solution pro-
cedures are numerical methods, i.e. the finite element
method and the boundary element method, based on
variational or energy methods, on weak formulations
of boundary problems or on the theory of singular
integral equations.

Applying the finite element methods available in
a great number of research and commercial finite ele-
ment programs, all problems can be solved, but de-
pendent on the selected plate theory the numerical
effort can be increasing rapidly, especially for multi-
layered or three-dimensional plate modelling. But for
the simple Mindlin's plate model numerical problems
may arise too. A first problem, termed as shear loc-
king in finite element solutions, due to vanishing shear
deformation terms in the variational displacement
based formulation. A second problem of domain di-
scretisation based on numerical methods is the incre-
asing effort to find a suitable discretisation, i.e. a su-
itable element mesh which allows to represent the
boundary-layer solution arising in the case of several
types of boundary conditions. Various techniques are
available to overcome these problems, e.g. [31], ho-
wever, it is difficult to make general conclusions on
the influence of the shear correction for different bo-
undary conditions and loading types if only numeri-
cal results are given.

For plates with simple geometry, e.g. with stra-
ight line boundaries, the variational methods of Ritz
and Galerkin can be recommended to construct accu-
rate approximate solutions. In the last years it could
be demonstrated that the variational iteration method,
based on the Vlasov-Kantorovich approach, yields
good approximate solutions for various plate theories
and optimal one-term approximate analytical solutions
for general boundary conditions [32, 33, 34, 35, 36].

6. Conclusions

Engineering plate theories got many impacts to
improve the structure analysis of two-dimensional
structures. The increasing importance of composite
materials required refined theories for sandwich and
laminate plates. Stress analysis and life-time predic-
tions of thin-walled structures operating at elevated
temperatures require to include the modelling of cre-
ep-damage behaviour and a generalisation of the so-
lution procedures. The paper summerises some se-
lected aspects of trends in engineering plate theories.
Further ideas and overviews on relevant research pa-
per are given, e.g., in [2, 37, 38, 39].
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