A NUMERICAL-EXPERIMENTAL STUDY ON DAMAGED BEAMS DYNAMICS

This paper focuses on analysis of damage influence on dynamical behaviour of beams. Finite Element Method was used to simulate vibrations of beams under three variants of boundary conditions: a cantilever beam, a simply-supported beam and a symmetrically clamped beam. Analysis of natural frequencies of both intact and damaged beams was performed in order to observe the effect of damage on the beams dynamics. Next, recurrence plot technique was applied. Finally, experimental verification is performed to check the numerical results.

Keywords: damage detection, recurrence plot, beam dynamics, free vibration.


Słowa kluczowe: detekcja uszkodzeń, wykresy rekurencyjne, dynamika belki, drgania własne.

1. Introduction

In many contemporary structures various types of defects can appear leading to significant reduction of the element rigidity and changing its overall mechanical behaviour. A special challenge is detection and localization of hidden defects, which can have many forms depending on the scale of the problem, eg. dislocations, voids or inclusions in microscale [43, 49, 44, 3] to macroscopic defects, such as delamination in laminated composites [31] or welds in metallic materials [53, 50]. The current work is focused on testing the applicability of dynamic vibration-based, as well as the space analysis methods to defect detection and localization in 1D (beam) structures. The vibration-based methods have been widely used in the plates and beams dynamics. For example, Manoach et al. [25, 26, 27, 24, 48] analysed the frequencies and modes of free vibrations in order to identify damage in beam and plates. The most interesting aspect of these papers was introduction of the so-called Damage Index exploiting the information given by the Poincaré maps [19]. The authors of the current study aimed at testing other dynamical methods towards detection and localization of defects in structures, which led them to reach for time series analysis.

Experimental time series, especially nonlinear, can be analyzed by means of the method of delay coordinates, which allows to reconstruct a phase space and Poincaré section. This procedure is precisely described in [2, 32] and can be applied for analysis of experimental signals obtained from different kinds of real processes [12, 5] and numerical simulations [40]. For instance, the delay coordinate technique is used for researching dynamics of robot joints [47] and to analyse nonlinear system with dry friction [40]. Interesting contribution in the field of phase space reconstruction is presented in [7, 8, 36] in which the method of delay coordinates is employed for experimental and numerically generated signals, also with noise. Another example can be an impact and a self-excited oscillator with Coulomb-Amontons friction [13].

On the basis of delay coordinates method, a recurrence plot technique is introduced to analyse linear or non-linear stationary and also non-stationary time series [30]. The formal concept of recurrences was introduced by Henri Poincaré in his seminal work from 1890 [37], for which he won a prize sponsored by King Oscar II of Sweden and Norway [30]. Therein, Poincaré did not only discover the homoclinic tangl which lies at the root of the chaotic behaviour of orbits, but he also introduced (as a by-product) the concept of recurrences in conservative systems. Even though much mathematical work was carried out in the following years, Poincaré’s pioneering work and his discovery of recurrence had to wait for more than 70 years for the development of fast and efficient computers to be exploited numerically. The use of powerful computers boosted chaos theory and allowed to study new and exciting systems. Some of the tedious computations needed to use the concept of recurrence for more practical purposes could only be made with this digital tool [30]. In 1987, [5] introduced the method of recurrence plots (RPs) to visualize the recurrences of dynamical systems. Since that time, scientists have been working in various fields have made use of the RPs. Applications of RPs can be found in numerous fields of research such as astrophysics [52], earth sciences [28], engineering [39, 17, 21, 22, 20, 6, 38], biology [11, 23], cardiology, or neuroscience [29, 30, 46, 51], and otolaryngology [41]. Damage detection of various mechanical structure is also analyzed with the help of the RP [34, 35, 42, 33].

Here, in this paper the applicability of the RPs to identify defect in beam structures were tested and compared with the results of different phase space methods; experimental verification of the results was performed, as well.
2. Research methodology

2.1. Numerical model and assumptions

In numerical analyses three variants of boundary conditions (BC) were considered:

- a cantilever beam (Fig. 1),
- a simply-supported beam (Fig. 2) and
- a beam encasted at both ends (Fig. 3).

3. The methodology of analyzing the beams dynamics based on a comparison of the intact and the damaged beam for each of the three BC variants.

The considered numerical beam models prepared in the ABAQUS/CAE software environment had dimensions equal \( L \times B \times H = 800 \times 20 \times 5 \text{mm} \). One of the possibilities of modelling damage in a beam is changing its local stiffness [10, 14]. Thus, both in the FE analyses and in the experimental part of the research a local thinning of the beam was introduced. For the purpose of testing the usefulness of the RPs method in damage identification process the isotropic aluminum beam was tested so far. Nevertheless, the research on the laminated composite beams is in progress. The accepted material data were as follows: mass density \( \rho = 2720 \text{kg/m}^3 \), Young’s modulus \( E = 70000 \text{GPa} \) and Poisson’s coefficient \( \nu = 0.33 \). The BCs for the accepted three beam models can formally be written as: \( u(x = 0) = 0, w(x = 0) = 0, \quad dw/dx(x = 0) = 0, \quad u(x = L) = 0, \quad w(x = L) = 0, \quad dw/dx(x = L) = 0 \).

\[ dx(x = L) = 0. \]

\[ = 0, \quad w(x = 0) = 0, \quad w(x = L) = 0 \text{ and } u(x = 0) = 0, \quad w(x = 0) = 0, \quad w(x = L) = 0 \text{ and } u(x = 0) = 0, \quad dw/dx(x = 0) = 0, \quad u(x = L) = 0, \quad w(x = L) = 0, \quad dw/dx(x = L) = 0. \]

In each case of the BC both damaged and intact beam was analyzed. Such an approach allowed to compare the dynamics of the damaged beams with their undamaged counterparts. In general, for all the models the eigenproblem was solved with the Lanczos algorithm in order to get the frequencies of free vibrations and the respective modes. In the end the elaborated results were collected and compared in order to find the influence of the defect on the dynamical response of the analyzed beam structures. The beam models were composed of the B21 beam-type elements available in the ABAQUS/CAE standard element library [1]. The total number of elements was 40. The defect was modeled as a local thinning of the beam cross-section, as justified above. The weak cross-section had a thickness reduced from the nominal 5mm to 3mm. The defect of the length \( D = 80 \text{mm} \) starting at \( x = 40 \text{mm} \) from the clamp occupied 10% of the total beam’s length. The results obtained with the ABAQUS/CAE were analyzed with the help of different time series analysis and phase space techniques being a background for testing the recurrence plots (RPs) applicability for damage identification. Thus, several scientific approaches were applied simultaneously to find any differences in dynamical output between the intact and the damaged beam. 

3.1. Recurrence plots technique

The basic idea of recurrence analysis bases on the delay method where any scalar time series may be used to construct a new time series vector that is equivalent to the original dynamics from a topological point of view. The specific vector in a new space (called the reconstructed space), is formed according to the Takens’ theory [45] and can be presented as follows:

\[ s_i = (x_i, x_{i+d}, x_{i+2d}, ..., x_{i+(m-1)d}) \]  

(1)

where \( m \) is called the embedding dimension, \( d \) is generally referred as the delay (time delay) or lag. This vector is useful only if parameters \( m \) and \( d \) are properly chosen. If the delay \( d \) is too long, then the coordinates are essentially independent and the proper information cannot be gained from the plot. Whereas the delay \( d \) is too short, then the reconstructed states differ not much and the points are scattered around a straight line. The second key embedding parameter \( m \) means that we are looking for such dimension of reconstructed phase space to avoid false crossing of the trajectory. If any two points which stay close in the \( m \)-dimensional reconstructed space will be still close in the \( (m + 1) \)-dimensional reconstructed space then such a pair of points are called true neighbors, otherwise, they are called false neighbors. One of the most efficient and popular method to choose the time delay \( d \) and embedding dimension \( m \) are: the average mutual information (AMI) [9] and the false nearest neighbors method (FNN) [18], respectively. In this paper AMI and FNN are used as well.

Recurrence Plot (RP) is an advanced technique of nonlinear data analysis. RP means a visualization of a square matrix, in which the matrix elements correspond to those times at which a state of a dynamical system recurs [30]. The recurrence diagram is expressed by:

\[ R_{ij} = H(e - |x_i - x_j|) \]  

(2)

where \( H \) is the Heaviside step function, \( e \) is a tolerance parameter (threshold), \( si \) and \( sj \) are a delay vectors (vectors forming the phase space trajectory in the phase space). If the trajectory in the reconstructed phase space returns at time \( i \) into the neighbourhood of \( x \) where it was \( f \) then \( M_f = 1 \), otherwise \( M_f = 0 \). These results are plotted as black and white dots respectively. Detailed description of embedding parameters and much other additional information can be found in [16, 30, 9]. A pattern of RP represents dynamical system behaviour. For instance, periodic motion is reflected by long and non-interrupted diagonals. The vertical distance between these lines corresponds to the period of the oscillation. Irregular motion characterizes the pattern consist of different lengths lines and distance. Here RP technique is used as a method of damage detection in the beams. The embedding parameters: time delay \( (d) \) and embedding dimension \( (m) \) are estimated first before the recurrence analysis.

3.2. Experimental tests

Experimental verification was performed on the experimental setup presented in Fig. 4. The test setup consisted of the Polytec PSV 500
3D Laser Scanning Vibrometer possessed by Department of Applied Mechanics at Lublin University of Technology. This sort of vibrometer consists of three independent scanning heads and the data acquisition/visualization unit. Each head is equipped with a laser source; one of them has in addition a video camera. All the three heads have built-in precise transducers able to give displacements and velocities of the observed point of the scanned object in time. The three laser beams meet at one point with a defined precision given in microns, what enables highly accurate dynamical measurements, especially around the edges of a specimen. During the measurements a frequency of the laser beam, reflected by the tested object is compared to the one of the sent beam, according to the Doppler effect. Application of the three independent laser scanning heads enables contactless measurements of vibrations of three-dimensional (3D) objects, particularly those having small dimensions. The measurements are simultaneously performed for the three orthogonal spatial directions X, Y and Z. The acquisition/analysis unit is equipped with analog-to-digital data conversion cards. Their task is to collect the measurement data, what is supervised by a dedicated software installed on the PC computer. In addition, the acquisition unit is equipped with an excitation signal generation panel. The laser scanning vibration measurement allows registration of velocities up to 10 m/s in a wide range of frequencies from 0 to 100 kHz. The scanning heads of the PSV500 3D vibrometer enable measurements from 42 cm counting from the object to hundreds of meters [4].

4. Discussion of numerical and experimental results

The first step of the research was the numerical analysis of dynamical behaviour of three beam models differing with boundary conditions (Figs. 1, 2 and 3). Next an experiment was conducted with the Laser Scanning Vibrometer.

4.1. Cantilever beam

The FEA model of the cantilever beam is presented in Fig. 1. In the numerical model the deflection was read at the end point of the beam. The FE simulations gave the eigenfrequencies collected in Tab.1, where the relative differences of the damaged beam’s frequencies with respect to the intact one are also presented. In Fig. 5 a direct comparison of free vibration frequencies for both cantilever beams is presented.

Thus, the reader can see the absolute values of subsequent frequencies; the only slight difference between the frequencies obtained for the damaged beam in comparison with the healthy one is also well seen. Taking into account the frequencies of free vibrations collected in Tab.1 the excitation frequency for the cantilever beam was chosen to be 2 Hz at the sampling frequency of 0.02 s. Such an approach was proposed by Manoach et al. [25, 26, 27]. The load (pressure) was uniformly distributed along the beam. Its value was 1 kPa. The resulting displacement time courses of the beams free end were plotted in Fig. 6. For better visibility of the differences between the damaged and the intact beam a phase plot is shown in Fig. 7. Both the time series and the phase plots show only the difference in vibrations amplitude but the small change in frequency is not observable here. Therefore, the recurrence plot for the delay $d=3$, embedding dimension $m=2$ and the neighbourhood $\epsilon=0.002$ were done for the intact and the damaged beam in Fig. 8a and b respectively. The former plot obtained for the intact beam (Fig. 8a) pattern characterizes periodic motion. The pattern of the damaged beam (Fig. 8b) reflects also regular vibrations but the amplitude is different from the intact beam output so it is important to compare both cases in the same neighbourhood size $\epsilon$.

4.2. Simply supported beam

The simply-supported beam model is presented in Fig. 2. In this case, the displacement (deflection) was measured in the middle of the beam. The eigenfrequencies obtained numerically are given in Tab. 2 and graphically presented in Fig. 9. Again, the frequencies for the intact beam are bigger than those for the damaged beam. Concerning the obtained eigenfrequencies, the excitation frequency was set to 10 Hz, which was in each case less than $f_1$, in order to evade the resonance, as the analysis was by assumption linear. For the same reasons the amplitude of the distributed load was set to 10 kPa, what resulted in displacement amplitudes very similar to those obtained for the cantilever beams end; the beam response was sampled every 0.005 s.

Table 1. Eigenfrequencies of the cantilever beam

<table>
<thead>
<tr>
<th>Eigenfrequency order</th>
<th>Eigenfrequency [Hz]</th>
<th>Relative difference [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>intact</td>
<td>damaged</td>
<td></td>
</tr>
<tr>
<td>$f_1$</td>
<td>6.40</td>
<td>4.43</td>
</tr>
<tr>
<td>$f_2$</td>
<td>40.11</td>
<td>36.43</td>
</tr>
<tr>
<td>$f_3$</td>
<td>112.29</td>
<td>108.26</td>
</tr>
<tr>
<td>$f_4$</td>
<td>219.94</td>
<td>213.44</td>
</tr>
<tr>
<td>$f_5$</td>
<td>363.36</td>
<td>349.42</td>
</tr>
</tbody>
</table>
The time course (Fig. 10) and the phase plot (Fig. 11) depict the dynamic properties of the simply supported beam. The dynamic behavior of the intact and the damaged structure observed by time series (Fig. 10) and the phase plot (Fig. 11) were very similar to each other but the damaged beam exhibited a bit bigger amplitude of vibrations. The difference between them is more evident in recurrence analysis done for embedding parameters: \(d=2\), \(m=2\) and \(\varepsilon=0.005\).

4.3. Clamped-clamped beam

The third model of beam structure was clamped at both ends (Fig. 3). The dimensions of the beam, as well as the size and location of the defect was the same as in the previous two models. However,
For the accepted boundary conditions the beam was much stiffer, what was reflected by its eigenfrequencies collected in Tab.3 and graphically shown in Fig. 13. Also the expected deflections were smaller. For this reason the load amplitude value was chosen to be 1 kPa, what provided approximately the same value of deflection amplitude (measured in the beam’s mid-point) compared to the two previous models. The accepted excitation frequency was 20 Hz at 0.005 s sampling. Also in this case the damaged beam was less stiff than the intact one and therefore it had smaller natural frequencies and bigger vibrations.

Table 3. Eigenfrequencies of the clamped-clamped beam

<table>
<thead>
<tr>
<th>Eigenfrequency order</th>
<th>Eigenfrequency [Hz]</th>
<th>Relative difference [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>intact</td>
<td>damaged</td>
</tr>
<tr>
<td>$f_1$</td>
<td>40.74</td>
<td>36.82</td>
</tr>
<tr>
<td>$f_2$</td>
<td>112.30</td>
<td>108.41</td>
</tr>
<tr>
<td>$f_3$</td>
<td>220.14</td>
<td>213.93</td>
</tr>
<tr>
<td>$f_4$</td>
<td>363.88</td>
<td>350.43</td>
</tr>
<tr>
<td>$f_5$</td>
<td>543.52</td>
<td>522.80</td>
</tr>
</tbody>
</table>

Fig. 11. Phase diagram for the simply supported beam excited at 10 Hz

Fig. 12 Recurrence Plot for simply supported intact beam (a) and damaged (b)

Fig. 13. Comparison of eigenfrequencies for the clamped-clamped intact and damaged beam

Fig. 14. Displacement time course of intact and damaged clamped-clamped beam forced vibrations at 20 Hz

Fig. 15. Phase diagram for the clamped-clamped beam excited at 20 Hz

Fig. 16. Recurrence Plot for clamped-clamped intact beam (a) and damaged (b)
amplitudes, what was reflected by the time series (Fig. 14) and the phase plot (Fig. 15).

The difference in eigenfrequencies was very small specially at first modes that is why simple frequency analysis was not sufficient
to detect damages in beams. The recurrence plot technique turned out
to give better results provided that embedding parameters are selected
properly. Here, for beams clamped at both ends, the embedding pa-
rameters were as follows: \(d=5, m=2 \epsilon=5\). Then, the recurrence plots
present various pattern depending on the damage existence (Fig. 16).
The intact beam (without defect) demonstrates regular RP (Fig. 16a),
while irregular pattern is typical for the damaged beam (Fig. 16b).
The damaged beam exhibits symptoms of quasi-periodicity.

4.4. Experimental results

The measurements were conducted on a physical aluminum
beams, both intact and defected. The BCs provided by the experimen-
tal setup in its current form were those given in Fig. 1 – the cantilever
beam. The results are collected in Tab. 4. Comparison of the results
with those given in Tab. 1 show their good compatibility. Namely, the
tendency of subsequent free vibration frequencies for the beam with
defect to be smaller than its counterpart obtained for the intact struc-
ture was confirmed experimentally. Moreover, the relative differences
were the biggest for the first mode, and simulations in the ex-
periment. This was of course connected with the applied BCs – clamp
at one end. For the higher frequencies the differences were circulating
around several percent in both cases. The discrepancies between the
numerical results and the experimental ones are now under detailed
consideration. The same applies to the experimental setup towards
testing the other BCs.

5. Conclusions

Defect detection procedure based on frequency analysis and recur-
rence plot technique is presented here with quite good results. Since
the difference in eigenfrequencies are relatively small especially for
lower modes, additional procedure to analyse excited vibrations of
identified object is important. The recurrence plots analysis gives a
new aspects of the problem. In case of damaged beams recurrence
plot pattern is always less regular that let us distinguish intact and
damaged structure.

The damaged beams have always bigger amplitude of excited
vibrations and smaller natural frequency. That is caused by smaller
stiffness of damaged beams comparing to intact beams which do not
have any detects. Numerical and experimental results are consistent
in this matter.

The difference in the natural frequencies between the intact and
damaged beam generally depends on BCs and mode number. Some-
times, it is better to analyse lower modes and sometimes higher ones
depending on BCs.

Acknowledgements

Financial support of Structural Funds in the Operational Programme - Innovative Economy (IEOP) financed from the European Regional Develop-
ment Fund – Project “Modern material technologies in aerospace industry”, POIG.01.01.02-00-015/08-00 is gratefully acknowledged.

References

Mechanics, June 17-20, 2003: On the different behaviour of porous ceramic polycrystalline materials under tension and compression stress
state, Elsevier, Amsterdam and Boston 2003.
dx.doi.org/10.1209/0295-5075/4/9/004.
0779(98)00109-X.
7. Franca LFP, Savi MA. Distinguishing Periodic and Chaotic Time Series Obtained from an Experimental Nonlinear Pendulum. Nonlinear
9. Fraser A, Swinney H. Independent coordinates for strange at-
tractors from mutual information. Physical Review A 1986; 33(2): 1134–1140,
http://dx.doi.org/10.1103/PhysRevA.33.1134.
11. Giuliani A, Manetti C. Hidden peculiarities in the potential energy time series of a tripeptide highlighted by a recurrence plot analysis: A
http://dx.doi.org/10.1016/S0960-0779(96)00121-X.
14. Ismail Z, Kuan KK, Yee KS, Chao OZ. Examining the trend in loss of flexural stiffness of simply supported RC beams with various crack


Sylwester SAMBORSKI
Jakub WIECZORKIEWICZ
Rafal RUSINEK

Department of Applied Mechanics
Lublin University of Technology
ul. Nadbystrzycka 36, Lublin, 20-618, Poland

E-mail: s.samborski@pollub.pl, j.wieczorkiewicz@pollub.pl,
r.rusinek@pollub.pl