ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein

JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies


 We verify submissions originality with the use of iThenticate plagiarism checker


 All accepted articles are published Open Access under the Creative Commons Licence: CC-BY 4.0

Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line


The average number of weeks from article submission to the final decision: 4 weeks




http://scientific.thomsonreuters.com/cgi-bin/jrnlst/jloptions.cgi?PC=D

http://www.thomsonreuters.com/products_services/scientific/Journal_Citation_Reports

http://doaj.org

http://infobaseindex.com

http://www.info.scopus.com/why-scopus/publishers/?url=detail/what/publishers/

http://www.ebsco.com


MOST CITED

Update: 2021-07-01

1. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 59
2. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 53
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 51
4. INNOVATIVE METHODS OF NEURAL RECONSTRUCTION FOR TOMOGRAPHIC IMAGES IN MAINTENANCE OF TANK INDUSTRIAL REACTORS
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 2 Pages: 261-267 Published: 2019

Times Cited: 50
5. APPLICATION OF NEURAL RECONSTRUCTION OF TOMOGRAPHIC IMAGES IN THE PROBLEM OF RELIABILITY OF FLOOD PROTECTION FACILITIES
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 20 Issue: 3 Pages: 425-434 Published: 2018

Times Cited: 45
6. ASSESSMENT MODEL OF CUTTING TOOL CONDITION FOR REAL-TIME SUPERVISION SYSTEM
By: Kozlowski, Edward; Mazurkiewicz, Dariusz; Zabinski, Tomasz; Prucnal, Slawomir; Sep, Jaroslaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 4 Pages: 679-685 Published: 2019

Times Cited: 40
7. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 39
8. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Volume 14, Issue: 2   Pages: 135-144   Published:2012

Times Cited: 38
9. TESTS OF EXTENDABILITY AND STRENGTH OF ADHESIVE-SEALED JOINTS IN THE CONTEXT OF DEVELOPING A COMPUTER SYSTEM FOR MONITORING THE CONDITION OF BELT JOINTS DURING CONVEYOR OPERATION
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 34-39 Published: 2010

Times Cited: 37
10. RELIABILITY ANALYSIS OF RECONFIGURABLE MANUFACTURING SYSTEM STRUCTURES USING COMPUTER SIMULATION METHODS
By: Gola, Arkadiusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 21, Issue: 1, Pages: 90-102, Published: 2019

Times Cited: 36

 

 



Task „Implementation of procedures ensuring  the originality of scientific papers published in the quarterly „Eksploatacja i Niezawodność – Maintenance and Reliability” financed under contract 532/P-DUN/2018 from the funds of the Minister of Science and Higher Education for science dissemination activities.


Ahmed Al-Garni

Modelowanie uszkodzeń elementów silnika samolotowego w oparciu o sztuczne sieci neuronowe o radialnych funkcjach bazowych

Celem pracy jest przedstawienie modelu służącego do predykcji uszkodzeń dwóch kategorii krytycznych elementów silnika samolotowego: elementów nieobrotowych, takich jak zawory i skrzynie biegów oraz elementów obrotowych, takich jak turbiny silnika. W pracy wykorzystano regresję Weibulla i sztuczne sieci neuronowe oparte na propagacji wstecznej oraz radialnych funkcjach bazowych (RBF). Model wykorzystuje dane o błędach zebrane od operatorów samolotów turbośmigłowych pracujących w trudnych warunkach pustynnych, gdzie erozja powodowana przez piasek stanowi szkodliwy czynnik ograniczający żywotność turbin. Prezentowany model jest więc szczególnie przydatny do trafnego prognozowania żywotności krytycznych elementów takich silników. Algorytm, który wykorzystuje sieci neuronowe o radialnych funkcjach bazowych, używa specyfikatora najbliższego punktu. Aktywacja bazuje na odchyleniu wcześniejszego prototypu od wektora wejściowego. Dwa wcześniejsze modele oparte na regresji Weibulla (Weibull regression modeling) oraz sieciach typu Feed-Forward Backpropagation wykorzystano do badań porównawczych. Wyniki porównania pokazują, że czasy uszkodzeń odwzorowane przez RBF pozostają w większej zgodzie z rzeczywistymi danymi o uszkodzeniach niż w przypadku obu wcześniejszych metod modelowania. Co więcej, technika ta ma porównywalnie większą efektywność, ponieważ liczba neuronów w każdej warstwie sieci neuronowej została zredukowana tak aby zmniejszyć czas obliczeń, przy minimalnym wpływie na dokładność wyników.

ANN-based failure modeling of classes of aircraft engine components using radial basis functions

The objective of this research is to present a model to predict failure of two categories of critical aircraft engine components; nonrotating components such as valves and gearboxes, and rotating components such as engine turbines. The work utilizes Weibull regression and artificial neural networks employing Back Propagation (BP) as well as Radial Basis Functions (RBF). The model utilizes training failure data collected from operators of turboprop aircraft working in harsh desert conditions, where sand erosion is a detrimental factor in reducing turbine life. Accordingly, the model is more suited for accurate prediction of life of critical components of such engines. The algorithm, which uses Radial Basis Function (RBF) NN, uses a closest point specifier. The activation is based on the deviation of the earlier prototype from the input vector. Two earlier models are used for comparison purposes; namely Weibull regression modeling and Feed-Forward BP network. Comparison results show that the failure times represented by RBF are in better compromise with actual failure data than both earlier modeling methods. Moreover, the technique has comparatively higher efficiency as the neuron’s number in each layer of ANN is reduced, to decrease computation time, with minimum effect on the accuracy of results.

 


SELECT PUBLICATION YEAR