ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.145
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




 

Impact Factor

Impact Factor

Impact Factor

Impact Factor

SCImago Journal & Country Rank

MOST CITED

Update: 2017-08-25

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 36
2. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 28
3. SELECTED ASPECTS OF PHYSICAL STRUCTURES VULNERABILITY - STATE-OF-THE-ART
By: Valis, David; Vintr, Zdenek; Malach, Jindrich

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 189-194 Published: 2012

Times Cited: 26
4. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 23
5. RELIABILITY BASED OPTIMAL PREVENTIVE MAINTENANCE POLICY OF SERIES-PARALLEL SYSTEMS
By: Peng Wei; Huang Hong-Zhong; Zhang Xiaoling; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 4-7 Published: 2009

Times Cited: 23
6. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Issue: 2   Pages: 135-144   Published:2012

Times Cited: 20
7. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 18
8. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 17
9. ANALYSIS OF TRANSPORTATION SYSTEM WITH THE USE OF PETRI NETS
By: Kowalski, Marcin; Magott, Jan; Nowakowski, Tomasz; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Volume: 15   Issue: 1   Pages: 48-62   Published: 2011

Times Cited: 15
10. PRODUCTIVITY AND RELIABILITY IMPROVEMENT IN TURNING INCONEL 718 ALLOY - CASE STUDY
By: Zebala, Wojciech; Slodki, Bogdan; Struzikiewicz, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15   Issue: 4   Pages: 421-426   Published: 2013

Times Cited: 14
 

 

Visits since 2016.06.29:
darmowe liczniki


Barbara Mrzygłód

A durability analysis of forging tools for different operating conditions with application of a decision support system based on artificial neural networks (ANN)

The paper presents the results of research concerning the percentage participation of destructive mechanisms for two typical variants of exploitation of forging tools: lubricated and cooled, and without lubrication. Discussed results come from the developed by the authors the decision support system (SEPEK-2) based on artificial neural network. The knowledge about the durability of forging tools needed for learning artificial neural network was included in the training data set, from comprehensive studies, carried out in industrial conditions. Set of training data set included 450 records of knowledge. The paper presents the process of acquiring knowledge, adopted neural network architecture and parameters developed network. Carried out a global analysis of the results generated by the developed system for the durability of forging tools treated as the maximum number of produced forgings to their destruction (from 0 to 25,000 items), showed that for the lubricated and cooling tools the dominant mechanism is thermo-mechanical fatigue, and do not abrasive wear, which actually dominates in the process of forging tools for uncooled and unlubricated tools. It should be emphasized that the overwhelming majority of studies in this area is attributed that to abrasive wear is dominant, and as shown by the results of research and analysis for the selected representative forging processes, with the use of decision support system based on ANN, the fatigue a thermo-mechanical is dominant in these processes. However, due to the easy measurability and commonly used models wear, based on the model of Archard, it is abrasive wear assigned the largest participation. In fact, for the tool lubricated and cooled tools a thermo-mechanical fatigue intensifies this effect attributed to abrasive wear. While the generally accepted view is correct, in the case of tools unlubricated, as confirmed by the analysis using ANN.

Analiza trwałości narzędzi kuźniczych dla różnych warunków eksploatacji z wykorzystaniem systemu wspomagania decyzji opartego o sztuczne sieci neuronowe

W pracy przedstawiono wyniki badań, dotyczące, procentowego udziału mechanizmów niszczących dla dwóch typowych wariantów eksploatacji narzędzi kuźniczych: smarowanych i chłodzonych oraz bez smarowania. Prezentowane wyniki pochodzą z opracowanego przez autorów systemu wspomagania decyzji (SEPEK-2) działającego w oparciu o sztuczną sieć neuronową. Wiedza o analizowanym zagadnieniu trwałości narzędzi kuźniczych, potrzebna do procesu uczenia sztucznej sieci neuronowej zawarta była w zestawie danych uczących, pochodzących z kompleksowych badań, zrealizowanych w warunkach przemysłowych. Zestaw danych uczących obejmował zbiór 450 rekordów wiedzy. W pracy przestawiono proces pozyskiwania wiedzy, przyjętą architekturę sieci neuronowej oraz parametry opracowanej sieci. Przeprowadzona globalna analiza wyników generowanych przez opracowany system, dla trwałości traktowanej jako zwiększająca się liczba odkuwek (od 0 do 25000 sztuk), wykazała że dla narzędzi smarowanych i chłodzonych dominującym mechanizmem jest zmęczenie cieplno-mechaniczne, a nie zużycie ścierne, które rzeczywiście dominuje w procesach kucia dla narzędzi niechłodzonych i niesmarowanych. Należy podkreślić, że zdecydowana większość opracowań z tego obszaru przypisuje, że to zużycie ścierne jest dominujące, a jak wykazały wyniki badań i analiz dla wybranych reprezentatywnych procesów kucia, przy wykorzystaniu systemu wspomagania decyzji opartego o SNN, to zmęczenie cieplno-mechaniczne jest dominujące w tych procesach. Jednakże ze względu na łatwą mierzalność oraz popularnie stosowane modele zużycia ściernego, bazujące na modelu Archarda, to właśnie zużyciu ściernemu przypisuję się największy udział, choć w rzeczywistości dla narzędzi smarowanych i chłodzonych zmęczenie cieplno-mechaniczne wzmaga ów efekt przypisywany zużyciu ściernemu. Natomiast ogólnie przyjęty pogląd jest słuszny, w przypadku narzędzi niesmarowanych. co potwierdziły także analizy przy wykorzystaniu SNN.