Fausto Pedro García Márquez
Heurystyczna metoda wykrywania i lokalizowania usterek z wykorzystaniem elektromagnetycznych przetworników akustycznych
Celem niniejszego artykułu jest omówienie nowatorskiego sposobu przetwarzania sygnałów w celu wykrywania, identyfikacji i oceny uszkodzeń strukturalnych przy użyciu ultrasonograficznych testów za pomocą elektromagnetycznych przetworników akustycznych (EMAT). Wykrywanie uszkodzeń polega na rozpoznaniu istniejących defektów wewnątrz danej struktury. Lokalizacja uszkodzeń sprowadza się do identyfikacji geometrycznego położenia defektu. Klasyfikacja defektu to klaster typu uszkodzenia w wielu scenariuszach uszkodzeń. W przypadku braku zewnętrznych zakłóceń, dobrym wskaźnikiem wykrywalności błędu jest stosunek sygnału do szumu (SNR). Pomimo tego, że SNR zależy od różnych parametrów, takich jak użyta elektronika, właściwości materiału, np. jednorodność i tłumienie, a także wielkość wady, wskaźnik ten można poprawić przy użyciu zaawansowanego przetwarzania sygnałów. Główne nowe zagadnienia naukowe przedstawione w niniejszym artykule skupiają się na filtrowaniu szumu sygnału za pomocą zaawansowanego przetwarzania sygnału cyfrowego, w tym wykorzystując transformaty falkowe w celu ulepszenia obrazu i sygnału; badanie analizy wieloparametrycznej w celu identyfikacji szumów i klasyfikacji defektów; badanie właściwości krzywych osłabiania w celu sprawniejszego wykrywania i oceny wad oraz rozwoju algorytmu lokalizacji.
A heuristic method for detecting and locating faults employing electromagnetic acoustic transducers
The objective of this paper is to demonstrate a novel signal processing for detection, identification and flaw sizing of structural damage using ultrasonic testing with Electromagnetic Acoustic Transducers (EMATs). Damage detection involves the recognition of a defect that exists within a structure. Damage location is the identification of the geometric position of the defect. Defect classification is the cluster of the damage type into multiple damage scenarios. In the absence of external interferences, a good measure of detectability of a flaw is its signal-to-noise ratio (SNR). Although the SNR depends on various parameters such as electronics used, material properties, e.g. homogeneity and damping, and flaw size, it can be improved using advanced signal processing. The main scientific novelties presented in this paper focus on filtering signal noise through advanced digital signal processing; incorporating wavelet transforms for image and signal representation enhancements; investigating multi-parametric analysis for noise identification and defect classification; studying attenuation curves properties for defect localisation improvement and flaw sizing and location algorithm development.
Alarms management by supervisory control and data acquisition system for wind turbines
Wind energy is one of the most relevant renewable energy. A proper wind turbine maintenance management is required to ensure continuous operation and optimized maintenance costs. Larger wind turbines are being installed and they require new monitoring systems to ensure optimization, reliability and availability. Advanced analytics are employed to analyze the data and reduce false alarms, avoiding unplanned downtimes and increasing costs. Supervisory control and data acquisition system determines the condition of the wind turbine providing large dataset with different signals and alarms. This paper presents a new approach combining statistical analysis and advanced algorithm for signal processing, fault detection and diagnosis. Principal component analysis and artificial neural networks are employed to evaluate the signals and detect the alarm activation pattern. The dataset has been reduced by 93% and the performance of the neural network is incremented by 1000% in comparison with the performance of original dataset without filtering process.