ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein
Our IF is 1.145
JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




 

Impact Factor

Impact Factor

Impact Factor

Impact Factor

SCImago Journal & Country Rank

MOST CITED

Update: 2017-11-16

1. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 40
2. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 28
3. SELECTED ASPECTS OF PHYSICAL STRUCTURES VULNERABILITY - STATE-OF-THE-ART
By: Valis, David; Vintr, Zdenek; Malach, Jindrich

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 189-194 Published: 2012

Times Cited: 26
4. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 24
5. RELIABILITY BASED OPTIMAL PREVENTIVE MAINTENANCE POLICY OF SERIES-PARALLEL SYSTEMS
By: Peng Wei; Huang Hong-Zhong; Zhang Xiaoling; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 4-7 Published: 2009

Times Cited: 23
6. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Issue: 2   Pages: 135-144   Published:2012

Times Cited: 22
7. MODELLING OF PASSIVE VIBRATION DAMPING USING PIEZOELECTRIC TRANSDUCERS - THE MATHEMATICAL MODEL
By: Buchacz, Andrzej; Placzek, Marek; Wrobel, Andrzej

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 2   Pages: 301-306   Published: 2014

Times Cited: 21
8. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 21
9. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 18
10. PRODUCTIVITY AND RELIABILITY IMPROVEMENT IN TURNING INCONEL 718 ALLOY - CASE STUDY
By: Zebala, Wojciech; Slodki, Bogdan; Struzikiewicz, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15   Issue: 4   Pages: 421-426   Published: 2013

Times Cited: 17
 

 

Visits since 2016.06.29:
darmowe liczniki


inspection

Random preventive maintenance policy based on inspection for a multicomponent system using simulation

In today's global situation where highly competitive companies demand production efficiently to reduce costs, increase product quality, and customer loyalty, maintenance becomes crucial to achieve this goal by reducing unplanned downtime, reworking of products, and costs. In this sense, the use of models that can represent this type of system, and help managers make decisions more easily, are of vital importance for companies. Thus, a preventive maintenance model for a multicomponent system with different failure mechanisms is proposed in this work. Considering that the objective is to optimize the number and the time of maintenance interventions, that will be done in the system, periodic inspections are carried out in order to minimize the expected costs of maintenance. The optimization was performed with simulation, which proved to be satisfactory, since the decision variables of the model behaved adequately when utilized within the context of an applied case study. In addition, these variables had different performances when analyzed in four different scenarios: the original model of the proposed policy, and three variations attributing costs of penalties.

Oparta na przeglądach polityka losowej konserwacji zapobiegawczej systemu wieloelementowego z wykorzystaniem symulacji

W dzisiejszej sytuacji globalnej, w której przedsiębiorstwa o wysokim stopniu konkurencyjności wymagają efektywnego obniżania kosztów produkcji, poprawy jakości produktów oraz zwiększania lojalności klientów, konserwacja ma zasadnicze znaczenie dla osiągnięcia tych celów poprzez redukcję nieplanowanych przestojów, oraz zmniejszenie konieczności usuwania usterek produktów a także obniżanie kosztów. W tym sensie, wykorzystanie modeli reprezentujących tego typu systemy i ułatwiające menedżerom podejmowanie decyzji , ma kluczowe znaczenie dla firm. W tej pracy zaproponowano model konserwacji zapobiegawczej dla wieloelementowego systemu o różnych mechanizmach uszkodzeń. Biorąc pod uwagę, że celem jest optymalizacja liczby i czasu trwania zabiegów konserwacyjnych dokonywanych w systemie, przeprowadzane są okresowe przeglądy mające na celu zminimalizowanie oczekiwanych kosztów utrzymania. Optymalizację przeprowadzono za pomocą symulacji, która okazała się zadowalająca, ponieważ zmienne decyzyjne modelu zachowywały się odpowiednio przy wykorzystaniu ich w kontekście omawianego studium przypadku. Dodatkowo, zmienne te przybierały różne wartości dla czterech różnych scenariuszy: pierwotnego modelu proponowanej polityki konserwacyjnej i trzech wariantów, w których uwzględniono koszty pracy systemu w stanie awaryjnym.

Development and sensitivity analysis of a technical object inspection model based on the delay-time concept use

In the presented paper, authors focus on the development of mathematical delay-time model for single-unit technical systems (technical objects) liable to costly failure. Failure is taken here to mean a breakdown or catastrophic event, after which the system is unusable until replacement. Implemented maintenance policy is the Block-Inspection Policy that assumes performing inspection actions at regular time intervals of T. In the perfect inspection case the availability and cost models are developed. This gives the possibility for analytical optimization of time between maintenance actions performance T for the infinite operational time of the system. Later, there is examined the compatibility of the developed analytical model with simulation results. The main target is to investigate what is the influence of the given model basic time components on the system availability ratio level and the system long-run expected maintenance costs. The analysis is conducted in the two main steps. The first one regards to analysis of expected number of events (failures, preventive replacements and inspection actions) in a single renewal cycle for the chosen range of time parameters: T and delay time h. In the next step, the availability ratio and long-run maintenance costs dependency on the chosen model’s time parameters is under consideration. At the end, the directions for further research work are defined.

Opracowanie i analiza wrażliwości modelu kontroli stanu obiektu technicznego z wykorzystaniem koncepcji opóźnień czasowych

W artykule autorzy skupili się na opracowaniu matematycznego modelu utrzymania obiektów technicznych podlegających kosztownym uszkodzeniom z uwzględnieniem koncepcji opóźnień czasowych. Uszkodzenie w danym przypadku oznacza awarię lub zdarzenie katastrofalne, po którym obiekt jest niezdatny do użytku do momentu wymiany. Wykorzystano politykę blokowej kontroli stanu obiektu, która zakłada, że operacje diagnozy jego stanu są przeprowadzane w regularnych odstępach co T jednostek czasu. Rozpatrzono model kosztowy oraz model gotowości dla przypadku perfekcyjnej diagnozy stanu obiektu. Pozwoliło to na przeprowadzenie analitycznej optymalizacji okresu T między kolejnymi diagnozami stanu obiektu dla nieskończonego horyzontu czasowego. Następnie, zbadano zgodność opracowanego modelu analitycznego z wynikami uzyskanymi w drodze symulacji. Głównym celem było zbadanie wpływu podstawowych parametrów czasowych opracowanego modelu na poziom współczynnika gotowości oraz oczekiwanych kosztów utrzymania badanego obiektu. Analiza została przeprowadzona w dwóch etapach. Pierwszy obejmuje analizę oczekiwanej liczby zdarzeń (uszkodzeń, wymian profilaktycznych oraz operacji kontroli stanu obiektu) dla wybranych zakresów parametrów czasowych: T i opóźnienia czasowego h. W kolejnym kroku zbadano zależność wskaźnika gotowości i oczekiwanych kosztów utrzymania obiektu od wybranych parametrów czasowych modelu. Pracę kończy wskazanie kierunków dalszych prac badawczych.

Inspection optimization model with imperfect maintenance based on a three-stage failure process

Rolling element bearings are one of the most widely used and vulnerable components in complex systems. The condition monitoring work is very critical for sustaining the system’s availability and reducing the maintenance cost. Shock pulse method (SPM) is a common technique to measure the operating condition of rolling bearings as a three color scheme, e.g., green, yellow and red. This paper proposes an inspection model based on a three-stage failure process which aims to optimize the inspection interval of bearings by minimizing the expected cost per unit time. The three-stage failure process divides the bearings life into three stages before failure: good, minor defective and severe defective stages, corresponding to the three color scheme of SPM. Considering the need to lubricate bearings when the minor defective stage is identified by inspection in industrial applications, we assume that maintenance at the time of inspection identifying the minor defective stage is imperfect. The concept of proportional age reduction is used to model the effect of imperfect maintenance on the instantaneous rates of the minor defective stage, the severe defective stage and failure. Perfect maintenance however is carried out if inspection detects bearings being in the severe defective stage. Failure can be found once it occurs and replacement has to be implemented immediately. Finally, a numerical example is presented to illustrate the effectiveness of the proposed model.

Model optymalizacji przeglądów w warunkach niepełnej konserwacji oparty o trójfazowy proces uszkodzenia

Łożyska toczne są jednymi z najczęściej stosowanych i jednocześnie najbardziej narażonych na uszkodzenia części składowych, układów złożonych. Monitorowanie stanu odgrywa bardzo istotną rolę w utrzymaniu dostępności układów i zmniejszeniu kosztów ich obsługi. Metoda impulsów uderzeniowych (SPM) jest powszechnie stosowaną techniką służącą do pomiaru stanu pracy łożysk tocznych, który reprezentowany jest za pomocą kodu trzech kolorów, na przykład, zielonego, żółtego i czerwonego. W artykule zaproponowano model przeglądów oparty na trójfazowym procesie uszkodzenia, który ma na celu optymalizację częstotliwości przeglądów łożysk poprzez minimalizację oczekiwanych kosztów przypadających na jednostkę czasu. Pojęcie trójfazowego procesu uszkodzenia pozwala podzielić żywotność łożyska na trzy fazy przed wystąpieniem uszkodzenia: fazę dobrego stanu, fazę drobnych defektów i fazę poważnych defektów. Podział ten odpowiada kodowi trzech kolorów SPM. Biorąc pod uwagę konieczność smarowania łożysk po zdiagnozowaniu, podczas przeglądu w warunkach przemysłowych, wystąpienia fazy drobnych defektów, zakładamy, że konserwacja w czasie takiego przeglądu jest konserwacją niepełną. Koncepcja proporcjonalnego obniżenia wieku służy do modelowania wpływu niepełnej konserwacji na chwilowe wartości intensywności fazy drobnych defektów, fazy poważnych defektów oraz uszkodzeń. Gdy podczas przeglądu stwierdzi się, że łożysko jest w fazie poważnych defektów, przeprowadza się pełną konserwację. Uszkodzenie zostaje wykryte zaraz po jego wystąpieniu, i wtedy należy dokonać natychmiastowej wymiany łożyska. Pod koniec artykułu, przedstawiono przykład numeryczny, który ilustruje wydajność proponowanego modelu.

Cost analysis of a two-unit cold standby system subject to degradation, inspection and priority

The present paper deals with a reliability model incorporating the idea of degradation, inspection and priority. The units may fail completely directly from normal mode. There is a single server who visits the system immediately when required. The original unit undergoes for repair upon failure while only replacement of the duplicate unit is made by similar new one. The original unit does not work as new after repair and so called degraded unit. The system is considered in up-state if any one of new/duplicate/degraded unit is operative. The server inspects the degraded unit at its failure to see the feasibility of repair. If repair of the degraded unit is not feasible, it is replaced by new one similar to the original unit in negligible time. The priority for operation to the new unit is given over the duplicate unit. The distribution of failure time follow negative exponential where as the distributions of inspection, repair and replacement times are assumed as arbitrary. The system is observed at suitable regenerative epochs by using regenerative point technique to evaluate mean time to system failure (MTSF), steady-state availability, busy period and expected number of visits by the server. A particular case is considered to see graphically the trend of mean time to system failure (MTSF), availability and profit with respect to different parameters.

Analiza kosztów dwu-elementowego systemu z rezerwą zimną z uwzględnieniem degradacji, kontroli stanu systemu oraz priorytetowości zadań

Niniejsza praca dotyczy modelu niezawodności uwzględniającego zagadnienia degradacji, kontroli stanu oraz priorytetowości zadań. Elementy mogą ulegać całkowitemu uszkodzeniu bezpośrednio z trybu normalnego. Istnieje jeden konserwator, który odwiedza system, gdy tylko zachodzi taka potrzeba. W przypadku uszkodzenia, element oryginalny podlega naprawie, podczas gdy element zapasowy (duplikat) podlega jedynie wymianie na nowy, podobny. Po naprawie, element oryginalny nie działa już jako element nowy lecz jako element zdegradowany. System uważa się za zdatny jeżeli pracuje którykolwiek z trzech typów elementów: nowy/rezerwowy/zdegradowany. W przypadku uszkodzenia elementu zdegradowanego, konserwator przeprowadza kontrolę stanu elementu, aby stwierdzić możliwość realizacji naprawy. Jeżeli naprawa elementu zdegradowanego jest niemożliwa, zostaje on wymieniony, w czasie pomijalnym, na element nowy, podobny do elementu oryginalnego. Nowy element uzyskuje priorytet pracy w stosunku do elementu rezerwowego. Rozkład czasu uszkodzenia jest rozkładem wykładniczym ujemnym, a rozkłady czasów kontroli stanu, naprawy i wymiany przyjmuje się jako rozkłady dowolne. System obserwuje się w odpowiednich okresach odnowy wykorzystując technikę odnowy RPT (regenerative point technique) w celu ocenienia średniego czasu do uszkodzenia systemu (MTSF), gotowości stacjonarnej, okresu zajętości oraz oczekiwanej liczby wizyt konserwatora. Przebiegi MTSF, gotowości i zysków w funkcji różnych parametrów przedstawiono w formie graficznej na podstawie studium przypadku.

Modeling planned maintenance with non-homogeneous defect arrivals and variable probability of defect identification

For any time based maintenance, three maintenance activities were normally carried out at a planned maintenance epoch, that is, inspection by a check list, repair to defects identified or reported and other maintenance actions. Here the other maintenance actions are referred to activities such as changing oil, greasing, cleaning and calibrating etc and are simply called Preventive Maintenance (PM) actions. In this paper we modelled the impact of all these three activities upon the failure process using a concept called the delay time. The delay time defines a two-stage failure process with the first stage of a random defect arising and the second stage from this point of arising to failure if unattended to. The duration of the second stage is called the delay time. The concept has been used for inspection modelling for years, but two new contributions were made in this paper. First, we allow the rate of arrival of hidden defects be a function of the time since last PM, which models the influence of PM actions, and secondly the probability of defect identification at an inspection is a function of the delay time, which allows that the easiness of defect identification increases toward the end of the delay time as we would have expected. A numerical example is presented to demonstrate the modelling idea.

Modelowanie planowych prac eksploatacyjnych przy niejednolitym pojawianiu się defektów i zmiennym prawdopodobieństwie wykrycia defektu

W przypadku określonych czasowo prac serwisowych (Time Based Maintenance), w trakcie planowych prac eksploatacyjnych przeprowadzano zazwyczaj trzy czynności obsługowe, tj. przegląd według listy kontrolnej, naprawę wykrytych lub zgłoszonych defektów oraz inne działania obsługowe. Inne działania obsługowe odnoszą się tu do takich czynności, jak zmiana oleju, smarowanie, czyszczenie, kalibracja, itd., które można po prostu nazwać działaniami obsługi profilaktycznej (Preventive Maintenance, PM). W niniejszej pracy, zamodelowano wpływ wszystkich trzech wymienionych czynności na proces uszkodzeniowy wykorzystując pojęcie czasu zwłoki (delay time). Czas zwłoki odnosi się do dwu-etapowego procesu uszkodzeniowego, którego pierwszy etap to pojawienie się niepożądanego defektu, a drugi to czas od pojawienia się defektu do wystąpienia uszkodzenia jeśli defekt nie zostanie usunięty. Czas trwania drugiego etapu nazywamy czasem zwłoki. Pojęcia tego od lat używa się do modelowania przeglądów, lecz niniejsza praca wnosi do niego dwa nowe elementy. Po pierwsze, częstotliwość pojawiania się ukrytych defektów przedstawia jako funkcję czasu, jaki upłynął od ostatniej obsługi profilaktycznej, co pozwala na zamodelowanie wpływu działań obsługi profilaktycznej. Po drugie, traktuje prawdopodobieństwo wykrycia defektu podczas przeglądu jako funkcję czasu zwłoki, uznając, zgodnie z oczekiwaniami, że łatwość wykrycia defektu wzrasta pod koniec czasu zwłoki. Koncepcję modelowania zilustrowano przykładem numerycznym.