ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein

JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




http://scientific.thomsonreuters.com/cgi-bin/jrnlst/jloptions.cgi?PC=D

http://www.thomsonreuters.com/products_services/scientific/Journal_Citation_Reports

http://infobaseindex.com

http://www.info.scopus.com/why-scopus/publishers/?url=detail/what/publishers/

http://www.ebsco.com


MOST CITED

Update: 2020-08-23

1. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 54
2. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 53
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 46
4. APPLICATION OF NEURAL RECONSTRUCTION OF TOMOGRAPHIC IMAGES IN THE PROBLEM OF RELIABILITY OF FLOOD PROTECTION FACILITIES
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 20 Issue: 3 Pages: 425-434 Published: 2018

Times Cited: 42
5. INNOVATIVE METHODS OF NEURAL RECONSTRUCTION FOR TOMOGRAPHIC IMAGES IN MAINTENANCE OF TANK INDUSTRIAL REACTORS
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 2 Pages: 261-267 Published: 2019

Times Cited: 38
6. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 36
7. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 35
8. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Volume 14, Issue: 2   Pages: 135-144   Published:2012

Times Cited: 35
9. TESTS OF EXTENDABILITY AND STRENGTH OF ADHESIVE-SEALED JOINTS IN THE CONTEXT OF DEVELOPING A COMPUTER SYSTEM FOR MONITORING THE CONDITION OF BELT JOINTS DURING CONVEYOR OPERATION
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 34-39 Published: 2010

Times Cited: 28
10. DEVELOPMENT TRENDS IN MACHINES OPERATION MAINTENANCE
By: Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 8-16 Published: 2009

Times Cited: 32

 



Task „Implementation of procedures ensuring  the originality of scientific papers published in the quarterly „Eksploatacja i Niezawodność – Maintenance and Reliability” financed under contract 532/P-DUN/2018 from the funds of the Minister of Science and Higher Education for science dissemination activities.


Janusz Rusek

Zastosowanie metody Support Vector Machine w analizie stanu technicznego zabudowy terenu górniczego LGOM

W pracy przedstawiono wyniki analizy zużycia technicznego budynków zlokalizowanych w zasięgu wpływów eksploatacji górniczej na terenie Legnicko-Głogowskiego Okręgu Miedziowego (LGOM). W badaniach zastosowano pokrewną sieciom neuronowym metodę wektorów podpierających (Support Vector Machine) w podejściu regresyjnym ε-SVR (Support Vector Regression). Celem badań było uzyskanie oceny wpływu zmiennych opisujących zabezpieczenia konstrukcyjne i remonty na przebieg modelowanego zjawiska. Podstawą do analiz był utworzony model zużycia technicznego budynków w postaci sieci ε-SVR. Oprócz zmiennych określających poziom zabezpieczeń konstrukcyjnych i remontów, w modelu uwzględniono zmienne opisujące: deformacje terenu pochodzenia górniczego, intensywność wstrząsów oraz wiek budynków. Dobór parametrów modelu przeprowadzono z wykorzystaniem, jako bezgradientowej metody optymalizacyjnej, algorytmu genetycznego. Bazując na utworzonym modelu ε-SVR przeprowadzono dwurodzajową analizę wrażliwości. Oceny wpływu zabezpieczeń konstrukcyjnych dokonano badając zmienność wektora gradientu modelowanej hiperpowierzchni. Natomiast analiza wpływu remontów na przebieg modelowanego procesu została przeprowadzona na bazie komparacji wyników symulacji modeluε-SVR. Wyniki badań potwierdziły przydatność przyjętej metodyki badań oraz pozwoliły na sformułowanie istotnych wniosków dotyczących wpływu analizowanych czynników na zużycie techniczne tradycyjnej zabudowy LGOM.

Application of Support Vector Machine in the analysis of the technical state of development in the LGOM mining area

The paper presents the results of the analysis of technical wear of buildings located within impact of mining plant in the Legnica - Głogów Copper District ( LGOM ). The study used method related to neural networks, support vector (Support Vector Machine) in regression approach ε-SVR (Support Vector Regression). The aim of the study was to assess the impact of variables describing the structural protection and renovations on the course modeled phenomenon. The basis for the analysis was created model of technical wear of buildings in the form of a network ε-SVR. In addition to the variables determining the level of structural protection and renovations in the model included variables describing: terrain deformation, mining intensity tremors and the age of the buildings. The choice of model parameters were performed using, as gradientlessness optimization method, genetic algorithm. Based on the established model ε-SVR two types of sensitivity analysis were applied. Assessing the impact of the structural protections have been studying by the analysis of variability of the gradient vector for the modeled hypersurface. The analysis of the impact of renovations on the course modeled process was carried out based on the comparator simulation results of ε-SVR model. The results confirmed the usefulness of the methodology of research and allowed to draw important conclusions on the impact of analyzed factors on the technical wear traditional buildings LGOM.

Extracting structure of Bayesian network from data in predicting the damage of prefabricated reinforced concrete buildings in mining areas.

This article presents the results of the research on the construction of a model for assessing the risk of damage to building structures located in mining areas. The research was based on the database on the structure, technical condition and mining impacts regarding 129 prefabricated reinforced concrete buildings erected in the industrialised large-block system, located in the mining area of the Legnica-Glogow Copper District (LGCD). The methodology of the Bayesian Belief Network (BBN) was used for the analysis. Using the score-based Bayesian structure learning approach (Hill-Climbing and Tabu-Search) as well as the selected optimisation criteria, 16 Bayesian network structures were induced. All models were subjected to quantitative and qualitative evaluation by verifying their features in the context of accuracy of prediction, generalisation of acquired knowledge and cause-effect relationships. This allowed to select the best network structure together with the corresponding optimisation criterion. The analysis of the results demonstrated that the Tabu-Search method adopting the optimisation criterion in the form of Locally Averaged Bayesian Dirichlet score (BDla) led to obtaining a model with the best features among all the selected models. The results justified the adoption of the BBN methodology as effective in the context of assessing the extent of damage to building structures in mining areas.