ISSN 1507-2711
JOURNAL DOI: dx.doi.org/10.17531/ein

JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies

 


Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line

 




http://scientific.thomsonreuters.com/cgi-bin/jrnlst/jloptions.cgi?PC=D

http://www.thomsonreuters.com/products_services/scientific/Journal_Citation_Reports

http://infobaseindex.com

http://www.info.scopus.com/why-scopus/publishers/?url=detail/what/publishers/

http://www.ebsco.com


MOST CITED

Update: 2020-08-23

1. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 54
2. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 53
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 46
4. APPLICATION OF NEURAL RECONSTRUCTION OF TOMOGRAPHIC IMAGES IN THE PROBLEM OF RELIABILITY OF FLOOD PROTECTION FACILITIES
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 20 Issue: 3 Pages: 425-434 Published: 2018

Times Cited: 42
5. INNOVATIVE METHODS OF NEURAL RECONSTRUCTION FOR TOMOGRAPHIC IMAGES IN MAINTENANCE OF TANK INDUSTRIAL REACTORS
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 2 Pages: 261-267 Published: 2019

Times Cited: 38
6. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 36
7. UTILIZATION OF DIFFUSION PROCESSES AND FUZZY LOGIC FOR VULNERABILITY ASSESSMENT
By: Valis, David; Pietrucha-Urbanik, Katarzyna

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 1   Pages: 48-55   Published: 2014

Times Cited: 35
8. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Volume 14, Issue: 2   Pages: 135-144   Published:2012

Times Cited: 35
9. TESTS OF EXTENDABILITY AND STRENGTH OF ADHESIVE-SEALED JOINTS IN THE CONTEXT OF DEVELOPING A COMPUTER SYSTEM FOR MONITORING THE CONDITION OF BELT JOINTS DURING CONVEYOR OPERATION
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 34-39 Published: 2010

Times Cited: 28
10. DEVELOPMENT TRENDS IN MACHINES OPERATION MAINTENANCE
By: Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 2 Pages: 8-16 Published: 2009

Times Cited: 32

 



Task „Implementation of procedures ensuring  the originality of scientific papers published in the quarterly „Eksploatacja i Niezawodność – Maintenance and Reliability” financed under contract 532/P-DUN/2018 from the funds of the Minister of Science and Higher Education for science dissemination activities.


Tamer Eren

Planowanie utrzymania ruchu w elektrowniach wodnych w oparciu o model sztucznej sieci neuronowej wsparty wielokryterialnymi metodami podejmowania decyzji

Elektrownie to zakłady produkcyjne o dużej skali, których głównym celem jest nieprzerwane, niezawodne, wydajne, rentowne oraz przyjazne dla środowiska wytwarzanie energii. Utrzymanie ruchu stanowi jeden z kluczowych czynników pozwalających na osiągnięcie tych szeroko zakrojonych celów, które określa się wspólnym mianem zrównoważonych dostaw energii. W elektrowniach, procesami utrzymania ruchu, realizowanymi w celu zapewnienia zrównoważonych dostaw energii, zarządza się z uwzględnieniem kosztów związanych z wymogami czasowymi, kosztów materiałów i robocizny oraz strat wytwarzania energii. Ponieważ elektrownie wykorzystują tysiące różnych urządzeń, niezwykle ważne jest prognozowanie dat wystąpienia uszkodzeń oraz zapewnienie bezawaryjnego utrzymania ruchu. W przedstawionych badaniach, rozważano problem planowania utrzymania ruchu sprzętu o wysokim poziomie krytyczności na przykładzie jednej z dużych elektrowni wodnych, która na koniec 2018 r. pokrywała jedną piątą zapotrzebowania Turcji na energię elektryczną. W pierwszym etapie badań, kryteria oceny określone przez ekspertów zatrudnionych w elektrowni ważono za pomocą powszechnie stosowanej w literaturze metody procesu hierarchii analitycznej (AHP) w celu ustalenia poziomów krytyczności poszczególnych elementów wyposażenia elektrowni. Aby opracować ostateczny ranking priorytetowości elementów wyposażenia elektrowni na podstawie określonych wcześniej wag, zastosowano technikę TOPSIS, która polega na porządkowaniu preferencji na podstawie podobieństwa do idealnego rozwiązania. Techniki tej użyto ze względu na jej zalety, których nie mają inne algorytmy oparte na relacji przewyższania (ang. outranking algorithms). Na podstawie wyników otrzymanych dla 14 głównych grup urządzeń o najwyższym poziomie krytyczności, określonym na podstawie danych pochodzących z elektrowni, oszacowano czasy pomiędzy dwiema awariami, a na ich podstawie zaplanowano działania konserwacyjne. W fazie szacowania, opracowano model sztucznej sieci neuronowej (ANN) w oparciu o dane o uszkodzeniach, które wystąpiły w ostatnich 11 latach działania elektrowni, dla wybranych grup urządzeń. Przewidywane daty wystąpienia uszkodzeń szacowano, po raz pierwszy w literaturze, biorąc pod uwagę zakład produkcyjny jako system, bez uwzględnienia sektora produkcyjnego. Plan obejmuje działania konserwacyjne, które mają być przeprowadzone przed przewidywanymi datami awarii, w celu zwiększenia wydajności wytwarzania energii, przedłużenia żywotności elektrowni, minimalizacji kosztów wytwarzania energii, maksymalizacji wskaźnika dostępności elektrowni oraz maksymalizacji zysków. Opracowany plan konserwacji wdrażano w omawianej elektrowni przez 2 lata. W tym okresie nie odnotowano przerw w pracy jednostek wytwórczych spowodowanych awarią rozważanych grup urządzeń, co oznacza, że wspomniane cele zostały osiągnięte.

 

An artificial neural network model supported with multi criteria decision making approaches for maintenance planning in hydroelectric power plants

Power plants are the large-scale production facilities with the main purpose of realizing uninterrupted, reliable, efficient, economic and environmentally friendly energy generation. Maintenance is one of the critical factors in achieving these comprehensive goals, which are called as sustainable energy supply. The maintenance processes carried out in order to ensure sustainable energy supply in the power plants should be managed due to the costs arising from time requirement, the use of material and labor, and the loss of generation. In this respect, it is critical that the fault dates are forecasted, and maintenance is performed without failure in power plants consisting of thousands of equipment. In this context in this study, the maintenance planning problem for equipment with high criticality level is handled in one of the large-scale hydroelectric power plants that meet the quintile of Turkey’s energy demand as of the end of 2018. In the first stage, the evaluation criteria determined by the power plant experts are weighted by the Analytical Hierarchy Process (AHP), which is an accepted method in the literature, in order to determine the criticality levels of the equipment in terms of power plant at the next stage. In order to obtain the final priority ranking of the equipment in terms of power plant within the scope of these weights, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used because of its advantages compared to other outranking algorithms. As a result of this solution, for the 14 main equipment groups with the highest criticality level determined on the basis of the power plant, periods between two breakdowns are estimated, and maintenance planning is performed based on these periods. In the estimation phase, an artificial neural network (ANN) model has been established by using 11-years fault data for selected equipment groups and the probable fault dates are estimated by considering a production facility as a system without considering the sector for the first time in the literature. With the plan including the maintenance activities that will be carried out before the determined breakdown dates, increasing the generation efficiency, extending the economic life of the power plant, minimizing the generation costs, maximizing the plant availability rate and maximizing profit are aimed. The maintenance plan is implemented for 2 years in the power plant and the unit shutdowns resulting from the selected equipment groups are not met and the mentioned goals are reached.